製造オペレーションマネジメント入門

～ISA-95 が製造業を変える！～

特定非営利活動法人ものづくりAPS推進機構
目次

序章 .. 1
まえがき .. 1
本書の構成 .. 2
分担者、協力者 .. 4
第 1 章 概要 ... 5
ISA-95 ができるまで .. 5
インタフェースの考え方 ... 6
ソフトウェア実装のための仕様 .. 8
第 2 章 業務機能の構造 ... 9
機能の階層モデル .. 9
設備の役割階層モデル ... 11
機能モデル ... 14
オペレーション管理の 4 つのカテゴリ .. 16
製造オペレーションマネジメントのアクティビティ ... 17
第 3 章 スケジューリングと情報 ... 21
プランニングとスケジューリングの関係 .. 21
スケジューリングのための情報 ... 22
生産能力の定義 ... 24
詳細スケジューリング ... 24
APS（先進的計画とスケジューリング） .. 28
第 4 章 アクティビティと連携情報 ... 31
生産コントロール機能 ... 31
ドメイン境界に位置する機能 ... 32
経営システム側の機能 ... 33
機能間の情報フロー .. 34
第 5 章 事例による説明 ... 39
果汁入り飲料製造工場 ... 39
アクティビティと情報フローの解析 ... 40
情報システム構築の流れ .. 42
終章 ... 47
「つながる工場」の未来 ... 47
情報連携と標準の役割 ... 48
おわりに .. 48
用語解説 .. 51
序章

製造業をとりまく現状を踏まえて、本書の位置づけと本書の構成内容を示します。

まえがき

製造業のものづくりが、IoT（Internet of Things）時代のなかで大きく変わろうとしています。 「現場」「現物」「現実」といった三現主義を徹底してきた日本の製造業は、これまでどちらかといえば ICT（Information and Communication Technology）に対して距離を置いていた部分があります。暗黙知の共有や高度な職人の技能など、そもそも ICT にはなじみにくい領域がクローズアップされてきたせいか、生産現場への ICT の普及は進んでいませんでした。

一方で、海外では、ものづくりのデジタル化が急速なスピードで進めています。3D プリントに代表されるように、設計や試作がデジタル化され、クラウドソーシングによって、生産工場はおろか、技術者の調達までもがグローバルでポーダレスになりつつあります。スマートファクトリーとして、工場の機能がモジュール化され、部品を組み立てる感覚でパーキャルな工場がリアルな製品を生み出す時代が、近いうちに来るかもしれません。

製造業の情報化を進めるにあたり、デジタルかアナログかといった二元論ではなく、両者のそれぞれに良い点をうまく取り入れた広義の“生産システム”をデザインする必要があります。そのためには、ものづくりを行なう工場とは、どのような形をしているのかを、情報の視点からモデル化し、その上で議論できる環境を整備しなければなりません。具体的な情報システムを構築する前に、製造業の業務の構造、モノと情報の流れ、意思決定のしくみなどをモデル上でデザインし合意した上で、ICT のしくみを実装しなければなりません。

こうしたモデル構築のために参考にすべきモデルをリファレンスモデル（参照モデル）と呼びます。本書で解説する ISA-95（Enterprise-Control System Integration：ビジネス及び製造システム統合）は、製造オペレーションマネジメントのリファレンスモデルとして欧米で主流となりつつあるものであり、その内容がほぼそのまま IEC/ISO 62264 として国際標準にまとめられています。一方、国内で提案されているリファレンスモデルとして、特定非営利活動法人ものづくり APS 推進機構が提供する PSLX 技術仕様（バージョン 3）があります。PSLX は、この ISA-95 に準拠していると同時に、PSLX の仕様の一部が ISA-95 およ
このからの製造業は、独自の要素技術を核としていかに高度で高品質なものづくりを実現するかを追求すると同時に、いかに外部とつながるか、連携できるかが重要な成長ファクターとなります。本書で紹介されている用語やリファレンスモデルを用いることで、それぞれの製造業は、それぞれの業務にあったモデルを作成することで、それぞれの個別の特徴を活かしつつ、相互に連携することが容易となります。本书によって、より多くの製造業が、現在および未来に向けて新たなグランドデザインを再構築し、より斬新で機動力のある企業に生まれ変わることを期待いたします。

IEC SC65E/JWG5 国内委員会主査（法政大学）
西岡 靖之

本書の構成

本書は、ISA-95 の概要を紹介し、特に重要と思われる概念についてその内容の一部を解説するものであり、規格書そのものを翻訳したものではありません。図表は、原著作者から直接許諾を得たうえで日本語化したものを使っていますが、本文は一部を除き、独自の内容による解説となっています。このため、規格書の内容を一部省略している場合や、理解を助けるために独自の記述が追加されている部分があります。したがって、本書の内容が ISA-95 規格書の内容と同一であることは保証されていません。必要に応じて、原書または国際標準である IEC/ISO 62264 をご参照ください。

ISA-95 は、以下の複数部により構成されています。

第 1 部「モデルと用語」
第 1 部では、経営システムと製造システムの 2 つの領域（ドメイン）における業務に関し
た機能や情報フローを定義し、この 2 つのドメイン間の境界となるインタフェースを定義
するために必要な用語やモデルについて規定しています。

第 2 部「オブジェクトモデル」
第 2 部では、第 1 部で示された経営システムと製造システムの 2 つのドメインをまたぐ
情報フローについて、その情報をコンピュータ上でソフトウェアとして表記することを想
定したオブジェクトモデルを定義しています。

第 3 部「製造オペレーションマネジメントにおける業務アクティビティ」
第 3 部が対象とする製造オペレーションマネジメントは、第 1 部でいう製造システムの
最上位に位置するもので、製造現場で実施されるさまざまな業務をモデル化します。ここでは、こうしたさまざまな業務の機能を実現するアクティビティとデータフローを定義しています。

第4部 「製造オペレーションマネジメントにおけるオブジェクトモデル」

第4部は、第2部と同様に、製造オペレーションマネジメントに関する情報のうちで、複数の異なる業務間でやりとりする情報を明らかにし、それらをソフトウェアとして表記する際に必要となるオブジェクトを定義しています。

第5部 「製造とビジネスとの業務連携」

第5部では、第2部で定義したオブジェクトモデルに基づき、ERP（基幹業務システム）など経営システム側の業務アプリケーションが、製造システム側の業務アプリケーションとデータ通信を行うためのメッセージ構造とプロトコルを規定しています。

2014年12月時点で、第1部、第2部、第3部、そして第5部が、すでに国際標準（IEC/ISO 62264）として承認されており、第4部は、ISA-95 としては承認され、国際標準化のための審議の最終段階となっています。また、これとは別に、新たに第6部、第7部の議論も始まっています。このうち、本書は、特にリファレンスモデルとして重要となる第1部および第3部について解説します。なお、第1部、第2部は、2013年に第2版が策定され承認されました。また第3部の第2版も投票の最終段階にあります。本書では、特に断わりがない場合は、それぞれの最新の版を対象とすることにします。

まず、第1章「概要」では、ISA-95 の全体像を理解するために、これまでの経緯や、規格の作成および活用に関する概要を説明します。続く第2章「業務機能の構造」では、対象業務を表現するための視点や粒度をあらかじめ定めます。また、製造システムおよび経営システムを、機能を実現するための業務の集まりとしてとらえ、さまざまな製造形態においてそれらの業務機能が共通してどのような構造となっているかを解説します。

第3章「スケジューリングと情報」では、製造オペレーションマネジメントにおいて、計画とスケジューリングの役割を示し、そこで行われているスケジューリング作業の具体的な内容と手順を解説します。

第4章「アクティビティと連携情報」では、経営システムドメインと製造システムドメインがもつさまざまな業務機能について、そこで実施されるアクティビティと、業務間でやりとりされる情報を示します。

第5章「事例による説明」では、具体的な工場を想定して、情報システムの構築のための要件定義や仕様検討にISA-95 を活用する方法を例示します。ここでは、果汁入り飲料製造
工場を例にとり、ISA-95のリファレンスモデルを用いて対象となる工場を記述した後に、情報システムのアーキテクチャと具体的な実装方法を議論する手順を示します。

そして、「終章」では、ISA-95標準の意味やインパクトについて、製造オペレーションマネジメントのこれからの展望を含めて解説します。さらに、「用語解説」において、ISA-95において用いられる用語について、その内容と意味を簡単に解説します。

分担者、協力者

本書の解説では、以下のメンバーによって分担執筆、レビュー、校正を行いました。

北島 禎二 東京農工大学
児玉 公信 (株)情報システム総研
杉浦 彰俊 森永エンジニアリング(株)
高見 光吉 横河ソリューションサービス(株)
茅野 眞一郎 三菱電機(株)
出町 公二 横河電機(株)
西岡 靖之 法政大学
宮田 宏 横河電機(株)
村手 恒夫 アズビル(株)
第1章 概要

ISA-95の全体像を理解するために、これまでの経緯や、規格の作成および活用に関する概要を説明します。

ISA-95ができるまで

1970年代から80年代にかけて、当時のコンピュータ技術の進歩にともない、多くの製造業が、生産管理や資材所要量計算などのしくみをコンピュータ化（電算化）していきました。ホストコンピュータが、さまざまなデータを一元的に管理し、これまで部署ごとに行っていた在庫管理や工程管理などを統合的に処理するCIM（Computer Integrated Manufacturing）が大きな流れとなり、日本を代表する製造業は、この時期こぞって、情報システムを構築していきました。

ISA-95の前身であるパデュー・リファレンスモデルは、このころ、パデュー大学が、デトロイトなど北米を拠点とする多数の製造業とともに開発したCIMのためのエンタープライズ・アーキテクチャのモデルです。エンタープライズ・アーキテクチャは、企業情報システムを構築する際に必要となる設計図に相当するものであり、企業そのものをモデル化したものともいえます。既存のパッケージをベースにカスタマイズすることが主流であった日本の情報システムの構築手法と異なり、一からシステム全体の設計を行っていたこれら北米の企業群は、その核となるシステムの設計図を作り上げていったのです。

1990年代に入り、製造業の基幹システムがMRP-II（Manufacturing Resource Planning）からERP（Enterprise Resource Planning）と呼ばれるようになり、コンピュータによる処理が、販売やマーケティング、購買や資材調達、物流やロジスティクス、製品設計、生産技術など広範囲になりました。そこで問題となったのは、そうした個別の機能モジュール、あるいは業務アプリケーションソフトウェア間のつなぎの部分です。

これは日本でも同じですが、製造業において、実際にモノを作っている工場は、それぞれの企業ごと、工場ごとに独自の慣習が多く、これを管理する情報システムもそれに対応して独自のデータとソフトウェアの構造になっています。したがって、こうした製造に関係した部分の情報システムと、それ以外の経営システムの部分との境界をあらかじめ定めておかないと、最終的な情報システム統合において、それぞれの独自の構造が大きな阻害要因にな
そこで、ISA（The International Society of Automation: 自動機器に関する国際的な標準化団体）は、1990年代後半になって、新たに経営システムと製造システムの統合に関する標準規格の策定に着手します。このときすでに、ISA-88（通称 S88）としてバッチコントロールの標準規格が完成しており、そこで活動していた規格策定チームの一部が独立する形でSP95委員会がスタートしました。この委員会で策定された規格をISA-95と呼びます。

当初は、パデュー・リファレンスモデルをベースに、経営システムと製造システムの境界となる部分のインタフェースを規定する目的でスタートしたISA-95は、その後、その対象領域を広げていき、現在では第1部から第5部までが完成しています。一般にISA規格として承認されたものは、そのまま米国での規格であるANSIとなるため、ANSI/ISA-95と記載される場合もあります。

同時に、ISA-95の委員会メンバーは、国際標準規格を策定するためのワーキンググループであるIEC 65E/JWG5の構成員として、IEC/ISO 62264を提案し、すでに第1部から第3部および第5部が国際標準となっています。国際標準化のプロセスの中で、オリジナルのISA-95版は、若干修正された後にIEC/ISO 62264となっていますが、内容はほぼ同じであり、大きな修正があった部分は、ISA側で国際標準に準拠するかたちで修正がなされています。

インタフェースの考え方

ISA-95の規格には、さまざまなモデルが登場します。ここでモデルとは、対象とする問題や課題に適切に対処するために、それを構成する機能や構成物、そして情報や情報フローを概念化して表現したものです。ここでのモデルは、詳細度や抽象度によってさまざまなレベルのもので構成されています。図1は、ISA-95で扱われるさまざまなモデルの概要とその関係を示したものです。

まず経営システムや製造システムなどのドメインを識別して、各ドメインモデルに含まれるべき業務機能を定義します。ここで定義された業務機能の中には、ドメイン間で連携するものが存在しています。次に、ドメイン間で連携する業務機能が相互に受け渡す情報とそのフローを定義します。そして、それらの情報をカテゴリ化し、カテゴリーごとに情報の構造をオブジェクトモデルとして記述します。
なお、ISA-95 の規格が含む範囲には、製造業における情報システムの多くの部分が含まれますが、特に、法規遵守のために欠くことのできない機能、工場の信頼性確保に欠くことのできない機能、そしてその機能が操業フェーズに影響を与えるものが中心となっています。つまり、運転員や作業者が、製造現場において、それぞれの仕事をするために必要となる情報が ISA-95 の対象となります。設備ライフサイクルにおける設計、建設および廃棄の各フェーズは含まれません。

経営システムと製造システムドメイン間でのインタフェースを識別するにあたって、ISA-95 では次のような方法をとっています。すなわち、両ドメインにおける業務機能を明らかにした上で、それらの機能が他の機能とやりとりする情報のうち、2 つのドメインの境界をまたぐもののみを対象とします。したがって、機能自身が単独で扱う情報や、ドメイン内部でのみ利用される情報は、ここでは対象となりません。図 2 に、対象として識別するインタフェースを示します。

図 2 はデータフロー図（DFD）です。丸で示したプロセス記号が機能を表します。機能と機能は実線で示したデータフロー記号で接続されます。そこで、経営システムと製造システムのドメイン境界を外す破線で示すと、グレー色でマークした 2 つの機能を結ぶ実線が、インタフェース仕様として注目すべき情報フローとなります。白抜きの丸で示した機能と、破線で示した情報フローは、規格作成の対象となりません。

なお、ISA-95 は、当初このように、経営システムと製造システムの境界のみに注目していましたが、その後、第 3 部を作成する段階となって、製造システムのドメイン内部での機能間をつなぐ情報についても規格作成の対象となりました。
すでに述べたように、ISA-95 はリファレンスモデルであり、これによって直ちにシステムが構築でき、ソフトウェアが動くわけではありません。実際に情報システムを構築するためには、このリファレンスモデルを利用し、それぞれの環境に合わせたモデルの作成とそれに基づくソフトウェア設計を行う必要があります。

ISA-95 に対応したソフトウェアの実装仕様として、B2MML（Business To Manufacturing Markup Language）が知られています。B2MML は、ISA-95 の第 2 部で定義されたオブジェクトモデルに対応した XML（構造化されたデータ記述言語）のスキーマ（データ構造）を定めています。さまざまな業務アプリケーションに対応するソフトウェア製品は、このような形式で記述されたメッセージを用いることで、相互にデータのやりとりが可能となります。
第2章 業務機能の構造

対象業務を表現するためには、そこでの視点や粒度をあらかじめ定めることが重要です。階層モデルを活用することで、こうした階層やレベルが明確となります。

機能の階層モデル

複雑で多岐にわたる製造業のさまざまな業務は、それぞれの業務が担う機能を階層的にとらえ直すことで、機能の意味が把握しやすくなります。機能階層モデルは、パデュー・リファレンスモデルを継承したもので、表1および図3に示すように、レベル0からレベル4まで定義されています。

経営計画（プランニング）とロジスティックスはレベル4に、製造オペレーションマネジメントはレベル3に、バッチ、連続、ディスクリートの各コントロールはレベル2とレベル1に位置づけられます。この機能階層モデルでは、機能を実現するためのアクティビティや、意思決定が行われる管理サイクルの時間スケール（タイムフレーム）が、その階層を特徴づけています。

表1 機能の階層モデル

<table>
<thead>
<tr>
<th>レベル</th>
<th>機能およびアクティビティ</th>
<th>タイムフレーム</th>
</tr>
</thead>
<tbody>
<tr>
<td>レベル4</td>
<td>製造部門を管理するために必要な経営に関するアクティビティ。</td>
<td>月、週、日</td>
</tr>
<tr>
<td>レベル3</td>
<td>要求された製品を生産するためのワークフローに関するアクティビティ。</td>
<td>日、シフト、時間、分、秒</td>
</tr>
<tr>
<td>レベル2</td>
<td>物理的なプロセスを監視制御するアクティビティ</td>
<td>時間、分、秒、1秒以下</td>
</tr>
<tr>
<td>レベル1</td>
<td>物理的なプロセスのセンシングや操作に関連するアクティビティ</td>
<td>秒、ミリ秒</td>
</tr>
<tr>
<td>レベル0</td>
<td>物理的なプロセスそのもの</td>
<td>リアルタイム</td>
</tr>
</tbody>
</table>
ISA-95 では、レベル4に相当する経営計画とロジスティクスに関する業務を経営システムドメイン、レベル3以下の業務を製造システムドメインとして、特にこのレベル4とレベル3との間のインタフェースが重要であるとの問題意識があります。さらに詳しく言えば、レベル3に相当する業務を製造オペレーションマネジメント (Manufacturing Operations Management : MOM) ドメインと呼び、レベル3を含むレベル2、レベル1までを合わせて、製造オペレーションコントロール (Manufacturing Operations and Control : MO&C) ドメインと呼んで区別する場合もあります。

レベル4のアクティビティ

レベル4では、原材料や交換部品などの副資材の管理、引当可能な在庫量の管理、エネルギー使用量の管理と供給の確保、そして工場内の仕掛品や中間在庫の管理など、生産のための資源を管理するアクティビティがあります。また、製品の品質保証および顧客別の個別仕様の管理を行うとともに、予防保全、予知保全の計画のための設備稼働履歴の管理、作業者に関する人財源の管理により、生産設備や資源の品質の向上に取り組みます。

生産にあたっては、基準生産計画（Master Production Planning : MPS）や工場全体のスケジュールの管理を行うとともに、設備稼働状況、エネルギー状況、保全要求などに対応した基準生産計画の変更、そして、生産を考慮した保全計画や設備更新計画の立案を行いま
す。さらには、資材所要量計画や調達計画を加味した最適在庫レベルの管理、生産の割り込みに対応した基準日程計画の修正、必要な生産に対応した設備やエリア単位での能力計画の立案といったさまざまな計画業務が実施されています。

レベル３のアクリティブティ
レベル３では、生産現場により近い立場から、さまざまなアクリティブティが実施されます。たとえば、エリアごとの詳細スケジューリングを行い、生産のための原倉管理と費用の最小化を図ります。そして、作成したスケジュールに基づきラインや設備の運用と稼働管理を行いつつ、状況に応じた詳細スケジュール変更、さらには、生産ラインや設備の保全業務、品質検査の実施と結果の管理、そして原材料やワークの移動または保管といったアクリティブティも必要となります。

また、生産内容に関する実績報告、生産や在庫に関するデータ収集の他に、品質保証の立場から、実績データの統計的な分析、そして作業者の作業時間管理と能力管理などもここで行われます。

レベル２、１、０
レベル２以下では、生産セルまたは生産ラインの内部において、より細かな粒度の生産プロセスを対象とし、管理・監視機能、設備オペレーションや制御機能、プロセスコントロール機能が実施されます。レベル２以下では、生産の形態に応じて、バッチコントロール、連続コントロール、ディスクリートコントロールに分かれます。ただし、これらはISA-95のスコープ外となっており、これらのレベルにおける業務あるいはアクリティブティは定義されていません。

設備の役割階層モデル

製造業を、エンタープライズ全体からなる巨大な設備（equipment）ととらえることが可能であるとするならば、この設備は、さらに下位の細かな設備によって構成されているといえます。これを繰り返していくと、図4に示すように、生産のための設備は、エンタープライズ、サイト、エリア、そしてワークセンタ、ワークユニットという役割階層によって、階層的に整理することができます。

図3の機能階層モデルにおけるレベル４の機能は、主に図4のエンタープライズ、サイト、そしてエリアの役割階層で対応します。それに、レベル３の機能は、エリアを最上位として、ワークセンタ、ワークユニットの役割階層で対応します。設備のそれぞれの階層について以下に解説します。
エンタープライズ

エンタープライズは、サイトの集まりで、設備の役割の階層モデルの最上位に位置します。エンタープライズは、どの製品を製造するか、それをどのサイトで製造するか、総合的にどう製造するかなどについて意思決定する役割を持ちます。

サイト

サイトは、エンタープライズを構成する物理的、地理的、または論理的な要素です。たとえば、地理的に独立した工場はサイトに対応します。サイトは、エリアの集まりで、さらに生産ライン、プロセスセル、生産ユニットなどが含まれます。それぞれのサイトは独自の製造能力を持ちます。

エリア

エリアは、サイトを構成する物理的、地理的、または論理的な要素です。ここには、プロセスセル、生産ユニット、生産ライン、貯蔵ゾーンといったワークセンタが含まれます。エリアは、通常、サイト内の地理的ロケーションや生産能力の種類によって識別されます。エリアについても、製造能力および能力量を持つのが一般的です。

機能と階層モデルにおいて、レベル4、つまり経営計画とロジスティクスのレベルのアクティビティが対象するのは、エリアの階層までとなります。

ワークセンタとワークユニット

ワークセンタは、設備の役割階層レベルにおいて、エリアの下に位置します。生産の形態によって、パッチコントロールに対応するパッチ生産用設備の場合はプロセスセル、連続コ
ントロールに対応する連続生産用設備の場合は生産ユニット、ディスクリートコントロー
ルに対応するディスクリート生産用設備の場合は生産ラインと呼ばれます。また、生産の形
態に係らず、貯蔵または移動用設備の場合は貯蔵ゾーンと呼ばれます。ワークユニットはワ
ークセンタのさらに下に位置づけられ、ワークセンタを構成します。

1つのエリアの中に、さまざまな種類のワークセンタが存在する場合もあります。たと
えば、ある飲料メーカーのエリアにはバッチで調合を行う生産ユニットがあり、その後に連続
で殺菌を行う設備があり、その製品を充填・包装するディスクリートの充填ラインがあります。
表2に、それぞれの生産形態ごとに定義されたワークセンタ、ワークユニットの例を示
します。

<table>
<thead>
<tr>
<th>生産の分類</th>
<th>ワークセンタの例</th>
<th>ワークユニットの例</th>
</tr>
</thead>
<tbody>
<tr>
<td>バッチプロセス</td>
<td>プロセスセル</td>
<td>ユニット</td>
</tr>
<tr>
<td></td>
<td>第5混合ライン、接着材ライン、洗剤ラインNo.13</td>
<td>バッチ蒸留塔、炉、混合器、バッチ反応器</td>
</tr>
<tr>
<td>連続プロセス</td>
<td>生産ユニット</td>
<td>ユニット</td>
</tr>
<tr>
<td></td>
<td>触媒分解装置No.1、スチームクラッカーNo.59、アルキル化第2ユニット</td>
<td>蒸留塔、管型反応器、連続槽型反応器</td>
</tr>
<tr>
<td>ディスクリート</td>
<td>生産ライン</td>
<td>ワークセル</td>
</tr>
<tr>
<td></td>
<td>ボトル詰め1号ライン、キャップ止めラインNo.15、CMOS第2ライン、ポンプ組立第2ライン</td>
<td>自動挿入機、検査機、仕分け機、加工機、マシニングセンター</td>
</tr>
<tr>
<td>貯蔵と移動</td>
<td>貯蔵ゾーン</td>
<td>貯蔵ユニット</td>
</tr>
<tr>
<td></td>
<td>倉庫、トレイラヤード、タンクファーム、サイロファーム、停船場、レイヤード、ホールディングエリア</td>
<td>ラック、箱、スロット、トレイラ、コンテナ、パレット、タンク、サイロ</td>
</tr>
</tbody>
</table>

プロセスセルとユニット

バッチ生産用設備であるプロセスセルおよびユニットは、バッチ製造プロセスにおいて、
製造オペレーションマネジメントの対象となる最下層の設備です。1つのプロセスセル内
の製造経路がジョブオーダによって変化するとき、その経路はユニットを単位として認識
されます。プロセスセルおよびユニットの定義はJIS C1807（IEC 61512-1）に記載されて
います。
生産ユニットとユニット

連続生産用設備である生産ユニットとユニットは、連続型の製造プロセスにおいて、製造オペレーションマネジメントが認識する最下層の設備です。生産ユニットはユニットで構成され、ユニットは装置モジュール、センサ、アクチュエータなどのより低レベルの要素からなります。生産ユニットは、一般的に、自動化された連続生産に必要なすべての装置をとりまとめた単位として、1つ以上の供給原料を変換し、分離し、反応させて、中間製品または最終製品を生産します。

生産ラインとワークセル

ディスクリート生産用設備である生産ラインおよびワークセルは、ディスクリート製造プロセスにおいて、製造オペレーションマネジメントが認識する最下層の設備です。生産ラインは、一般に、自動化された一連のプロセスを行う単位ですが、作業者による手作業が入る場合などは、ワークセルに相当する作業ステップを柔軟に組み替えることが可能となります。生産ラインとワークセルは、それぞれの設備ごとの製造能力や許容量などのデータを持ちます。

貯蔵ゾーンと貯蔵ユニット

貯蔵または移動用設備である貯蔵ゾーンおよび貯蔵ユニットは、製造オペレーションマネジメントが認識する最下層の設備です。貯蔵ゾーンはワークセンタのタイプの1つであり、貯蔵ユニットはさらに詳細な管理が可能なワークユニットの1つです。一般的に、貯蔵ゾーンでは受領、貯蔵、取り出し、移動、原材料の出荷などが実施されます。さらに、あるワークセンタからエンタープライズ内外を問わず他のワークセンタへ原材料を移動することもあります。貯蔵ユニットは通常、棚やパレットなどに相当し、貯蔵ユニットの物理的ロケーションは、送受中の場合など時間によって変わります。

機能モデル

ISA-95 は、製造業としてエンタープライズが共通に持つ12 個の機能群を挙げています。顧客と関係する機能群には、①オーダ処理、②製品出荷管理、③製品在庫管理、④製品原価管理、⑤マーケティングと販売などがあります。製品の品質やエンジニアリングに関係する機能群には、⑥品質保証、⑦保全管理、⑧研究開発および生産技術があります。さらに、⑨調達、⑩資材およびエネルギー管理、⑪生産スケジューリング、そして製造の中核となる⑫生産コントロールの機能群があります。これらの機能群には、経営システムドメインに属する機能と、製造システムドメインに属する機能が混在しています。言い換えれば、これらの機能群は、前述した機能階層モデルで分類されるレベル4とレベル3にまたがっています。

図 5 は、経営システムドメインと製造システムドメイン間のインタフェースが、それぞれ
製造オペレーションマネジメント入門

図 5 機能群と情報フロー

製造システムドメインの中核となる機能群は、「生産コントロール」です。ここには、製造オペレーションマネジメントに関連する機能の大半が含まれます。生産コントロールとしては、①生産スケジュールと生産標準に従って、原材料から最終製品までへの変換をコントロールする、②工場のエンジニアリングアクティビティを実行し、プロセス計画を更新する、③原材料に対する要件を発行する、④生産実績および原価についてのレポートを作成する、⑤能力量と品質に対する制約を評価する、⑥生産設備および制御装置の自己診断を行う、⑦標準作業手順書（Standard Operating Procedure : SOP）、レシピ、特定の処理設備へ
の操作のための生産標準やインストラクションを作る、などの機能が挙げられます。

オペレーション管理の4つのカテゴリー

本書が対象とする製造オペレーションマネジメントのアクティビティは、ISA-95の機能階層のレベル3に対応します。また、設備階層モデルにおいては、サイトおよびエリアにおいて実行されるアクティビティとなります。これらのアクティビティは、図6でアミ掛けした4つのカテゴリーに分けて説明することができます。

図6 製造オペレーションマネジメントモデル

生産オペレーション管理

生産オペレーション管理のカテゴリーでは、生産オーダに対応して、実際に部品や製品を生産するためのアクティビティを扱います。製品を生産するために、原材料、エネルギー、設備、作業者、情報を利用して、コスト、品質、量、安全性、納期などを考慮しながら、調整、指示、管理、トラッキングします。これにより、サイトやエリアにおいて、ワークセントラに対して実行される生産に関するすべてのアクティビティを含んでいます。
保全オペレーション管理

保全オペレーション管理のカテゴリでは、ワークセンター、ワークユニットを構成する設備や装置を、生産可能な状態に維持するための保全アクティビティを扱います。ここでは設備、ツール、または関連する施設の保全を行い、製造のためにそれらが確実に使える状態にします。緊急なトラブル対応に加え、定期的な保全、予防保全、予知保全のためのスケジューリングを行います。保全オペレーション管理は、過去のイベントや問題の履歴を管理し、装置の性能、保全作業者の実績、計装の信頼性などの問題の診断に役立てます。

品質オペレーション管理

品質オペレーション管理のカテゴリでは、品質の測定や報告の機能を調整、指示、管理、トラッキングするアクティビティを扱います。製造オペレーションマネジメントでは、製品の品質保証と注意すべき問題点の特定を行うために、製造からのリアルタイムデータの収集や分析といった機能が提供され、関連症状や、対応とその結果を合わせて収集します。また、オンライン、オフライン、インライン検査の実行をトラッキングし、ラボの情報管理システムに保存された情報を分析する統計的工程管理／統計的品質管理（Statistical Process Control：SPC／Statistical Quality Control：SQC）などのアクティビティがあります。

在庫オペレーション管理

在庫オペレーション管理のカテゴリでは、生産オペレーションにおいて、在庫や資材の移動を調整、指示、管理、トラッキングするアクティビティを扱います。在庫オペレーションは、適正な在庫レベルの設定や、入庫・出庫の管理、在庫棚卸、資材のピッキング、構内搬送、搬送設備の手配、棚やパレットの管理、倉庫間あるいは工場間のワークの移動などを行います。

ISA-95 が挙げている 4 つのカテゴリ以外にも、製造オペレーションマネジメントを行う上で重要なアクティビティは存在します。たとえば、セキュリティの管理、情報の管理、設備構成の管理、文書の管理、法令準拠の管理、事故と想定外の事象の管理などがあります。ISA-95 は、これらのアクティビティについては、規格として定義していません。

製造オペレーションマネジメントのアクティビティ

ISA-95 の第 3 部では、製造オペレーションマネジメントにおけるアクティビティを整理し、テンプレートとして定義しています。これは、図 7 に示す 8 種類の一般化されたアクティビティとその間の主要な情報の流れとからなります。このテンプレートは、前節で示した 4 つのカテゴリごとに適用され、合計 32 個のアクティビティが定義されることとなります。

なお、ここで定義された 8 種類のアクティビティは、4 章で述べるアクティビティよりも
大きな粒度となっています。したがって、これらを MOM（製造オペレーションマネジメント）アクティビティと呼んで、4 章で説明される一般的なアクティビティと区別する場合もあります。この MOM アクティビティは、規格の中では、それぞれが複数のタスクから構成されており、それらのタスクを 4 章のアクティビティに対応させることもできます。

図 7 製造オペレーションマネジメントのアクティビティ

経営システムドメインから送られる生産スケジュールや生産オーダは、オペレーションリクエストとして、“リソース管理”が提供する情報を加味して“詳細スケジューリング”に送られ、そこで詳細スケジュールに変換されます。この詳細スケジュールに従い、“ディスパッチング”が作業をディスパッチし、さらに“定義管理”から個別の製造方法の情報と合わせて“実行管理”が作業の実行を指示します。生産、保全、品質、そして在庫などに関する作業の結果は、“データ収集”によって集められ、“パフォーマンス解析”や“トラッキング”を経由して、オペレーションレスポンスとして再び経営ドメインに戻されます。

詳細スケジューリング

詳細スケジューリングでは、それぞれの設備や製品の特性に応じて異なる優先度、属性、特性および生産ルールに基づいて、作業の順序を決定します。形状や色の組み合わせなどの製品の特性を考慮して適切な順序でスケジューリングすることで、段取りの最小化やスループットの最大化につながります。ここでは、資源の能力が有限であることを前提として、負荷の山積みのタイミングの決定やシフトパターンの調整を行い、代替作業や並行作業などを検討します。

ディスパッチング

ディスパッチングは、予定されたジョブオーダ、バッチ、ロットなどを、特定の設備や作
業者へディスパッチすることで生産現場におけるオペレーションの流れを管理します。ここでは、詳細スケジュールを、許容された制限のなかで、ローカルな個々の能力や製造条件に応じて変更します。また、仕掛り品やリワーク品などのコントロールもあわせて行います。

実行管理
実行管理では、生産、保全、品質、在庫などのカテゴリーごとに、ジョブリスト（後述）にある個々の内容に従って、ダイレクトにリソースをコントロールし、その後その実行結果を得ます。ここでは、ロットやサブロットやバッチの個々の単位を実行し、正しい操作順序で作業を完了させ、そして現物としての製品を生産します。ただし、実際の具体的なワーク内容に関しては、レベル2のコントロールドメインでの扱いとなります。

リソース管理
製造オペレーションマネジメントでは、リソースとして作業者、設備、資材などが定義されています。リソース管理では、こうしたリソースに関する性能データ、保全データ、原価データなどが管理対象となります。リソース管理では、こうしたリソースを管理するとともに、詳細スケジュールに従ってリソースの予約を行います。また、設備の段取りおよび状態管理や稼働履歴の管理も行います。

定義管理
定義管理は、ワークセンタごとに定義されている生産ルールや各種の書式を管理します。ここで管理されるルールや書式としては、インストラクション、レシピ、図面、標準作業手順（SOP）、NCプログラム、バッチ記録、設計変更通知、シフト間連絡書などがあります。さらに、法規制文書、環境、安全、衛生などの規則文書、そして是正手順書などの管理や整合性の維持をおこないます。

トラッキング
トラッキングは、生産の状態やワークの処理状況に関する情報を提供します。生産の状態の情報には、そのワークに割り当てられた作業者、生産に使われた資材、現在の生産状況やアラーム情報、ワークやその他の例外事項なども含みます。ここでは、最終製品について、その構成品の種類や使用量の情報を記録することで、フォワードあるいはバックワードでその製品のトレースを可能にします。

データ収集
データ収集では、設備やそれを利用した生産プロセスに関連する運転データや各種パラメータを取得します。また同時に、そうした設備や生産プロセスのリアルタイムな状態や、生産、保全、品質、そして在庫などに関するデータの履歴を提供する役割も持っています。

パフォーマンス解析
パフォーマンス解析では、不具合の修正やさらなる改善のために、製造オペレーションマ
ネジメントに関するさまざまな作業のパフォーマンスを解析します。ここでは、実際に行われた製造オペレーションの結果をもとに、過去の履歴と期待される結果とを比較して、単位で更新されるパフォーマンスデータを提供します。パフォーマンスデータとしては、資源稼働率、能力余裕、サイクルタイム、そして生産の計画達成率などがあります。
第3章 スケジューリングと情報

製造業におけるプランニングとスケジューリングの役割を示し、スケジューリング業務の具体的な内容と手順を解説します。

プランニングとスケジューリングの関係

さまざまな計画を作成するアクティビティを、プランニングと呼びます。そこでは、オペレーションの目的を達成するためのアクション、または下位のオペレーションを明確にし、そのために必要な資源を確保するための意思決定を行います。これに対して、スケジューリングとは、与えられた様々な制約条件と評価指標の最適化を考慮し、アクションやオペレーションに対して、時間と空間と設備の資源（リソース）を割り当てる意思決定の行為です。

図8はプランニングとスケジューリングの関係構造を表しています。図において、要求も現実も常に変化し流動的であり、それにともなってプランニングとスケジューリングが行われます。プランニングによって、スケジューリング問題における制約やサブゴールが定義されます。一方、スケジューリングの結果は、プランニングの結果が実現可能で効率的かどうかを示します。もし実現可能でなければ、プランニングは他の制約やサブゴールをスケジューリングに対して提示することになるでしょう。つまり、スケジューリングの実現可能
性と効率性は、プランニングに対する一種の制約条件となります。

プランニングとスケジューリングの違いは、時間に対する視点の違いにも起因しています。プランニングにおける主要な結果は、一定の期間における目標数量です。たとえば、プランニングの結果は「今月は50,000個」、「来月の部門売上は$480,000」、「来週の製造1課の残業時間合計は850時間」などと表されます。

スケジューリングの結果はアクションの具体的なタイミングを表します。例えば、作業の開始・終了時刻、資材の入庫出庫時刻、製品の出荷時刻などです。作業に関する順序情報は、相対もしくは絶対時刻の連続した時間軸上で表されます。たとえば、スケジューリングの結果は「月曜日9:00にワークオーダ2345を6シフトにわたり93%の稼働率で実行する」、「水曜日の9:00にE887eの予防保全を行う」と表現することができます。

ISA-95では、経営システムのドメイン（レベル4）と、製造システムのドメイン（レベル3）の両方にスケジューリングの機能がまだがっています。上位のスケジューリングは、エンタープライズやサイト、つまり工場全体を対象としているのに対して、製造システムのドメインでは、詳細スケジューリングとして、より詳細なエリアやワークセンタが対象となります。

詳細スケジューリングは、製造オペレーションマネジメントの4つのカテゴリ、つまり生産、保全、品質、そして在庫のそれぞれのオペレーション管理業務ごとに存在します。それぞれのスケジューリング間では、相互の共通の生産資源や時間が競合する可能性があるため、それらの相互作用は明確に定義する必要があります。たとえば、生産スケジューリングと在庫スケジューリング間では、生産によって消費もしくは生成される在庫という意味で、裏表の関係にあり、さらに輸送のためのスケジュールは生産スケジュールもしくは在庫スケジュールと直結しています。

生産スケジューリングと保全スケジューリング間では、生産に提供できる設備や資源の能力を決定する一方で、保全のために確保される時間の調整が必要となります。さらに、生産スケジューリングと品質検査スケジューリング間では、求められる品質レベルに応じた品質検査のためのスケジュールが必要であり、検査作業の結果、不合格となったものに対する該当製品の作り直しのためのスケジュールも新たに必要となるかもしれません。

スケジューリングのための情報

生産スケジューリングを実行するためには、顧客やより上位のシステムから受け取る生産オーダのほかに、作るべき製品の情報があらかじめ定義され、その情報を受け取る必要があります。一般に、BOM（部品表）として管理されている情報は、これに相当します。
実際に製品を生産するために必要な資源として、こうした材料や部品といった個別の資材情報の他に、製造設備や作業者などの生産資源を確保することも重要です。ISA-95では、図9に示すように、資材や部品などに対応するBOM（Bill of Materials）は、広い意味で生産のためのリソースであり、製造資源表（Manufacturing Bill）に含まれています。そして、特定の製品の生産方法に照らして、必要な製造資源、必要な資材が確保できたことを確認し、スケジューリングを実行することになります。図では、これを製品セグメントと呼んでいます。

これに対して、製造資源表にある資源が、実際に、必要なときに、必要な量について利用可能かどうかは、その資源の生産能力およびその能力をいかに具体的な生産に引当てることができるスケジュールに依存して変化します。ISA-95では、資源の能力として、作業者能力、設備能力、そして資材能力を定義しています。このうち、作業者能力と設備能力は、再生可能な能力であり、引当て作業が完了したら、その能力が復元します。これに対して、資材能力は、引当てられた資材を再び手配し入庫しないかぎりその数量は復元しません。
生産能力の定義

生産能力情報は、資源の階層におけるサイト、エリアおよびそのエリアに属する要素に対して、それぞれ作業者、設備および資材の生産能力を表します。生産能力情報は、現在、将来、あるいは過去におけるこうした資源の引当可能状態も表現することができます。図11に、予測される引当可能な能力量、引当済み能力量、引当対象外の能力量の関係を示します。ここで、過去の能力量は、使用済み能力量と未使用能力量に分類されています。現在および将来については、引当済み能力量、引当可能な能力量、引当対象外の能力量に分かれます。論理的には、生産能力は引当済み能力量、引当可能な能力量、そして引当対象外の能力量の合計値となります。

引当済み能力量は、通常スケジュールや生産資材の状況に基づき、将来の生産に引当てられた資源に対応しています。また、引当対象外の能力量は、設備の状態、設備の使用状況、作業者の空き状況、資源の引当可能状況など理由により、将来の生産に引当できない資源に対応します。そして、引当可能な能力量は、既に引当済みではなく、将来の追加生産に対して引当可能な資源となります。

詳細スケジューリング

製造オペレーションマネジメントのドメインでは、生産オペレーション管理、保全オペレーション管理、品質オペレーション管理、そして在庫オペレーション管理という4つのカテゴリーそれぞれに詳細スケジューリングが存在します。ここでは、その中で、生産オペーレーシ
ヨン管理として最も一般的な詳細生産スケジューリングについて説明します。

詳細生産スケジューリングでは、上位の経営システムから受け取った生産スケジュールの要求を満たすように、詳細なスケジュールを作成し、生産現場の最適な資源に作業を振り分けます。ここでは、生産順序の決定や、段取り替えの最小化、そして、パッチサイズや能力制約による作業の統合や分割などを行います。一般に、ERP（基幹業務システム）など、エンタープライズのレベルでの計画システムでは、個々のワークセンタ、ワークユニット、作業者などについて考慮しませんが、詳細生産スケジューリングは、生産現場で固有な状況や資源の利用状況を考慮する点が特徴です。図12に詳細生産スケジューリングに関連する他のアクティビティとの情報のやりとりを示します。

図12 詳細生産スケジューリングに関連する情報の流れ

情報の流れからもわかるとおり、詳細生産スケジューリングは、上位の経営システムのドメインから受け取った生産スケジュールをもとに、個々の設備やワークセンタあるいは作業者に対するワークスケジュールを作成し、それを生産ディスパッチングに送ります。また、同時に、上位から受け取った各生産のリクエストに対する最終完了時刻の計算、各期間におけるボトルネックとなる資源の特定、そして個々の生産に関する将来の生産可能量などの確認も行う場合があります。

ここで作成されるワークスケジュールは、定義管理からのワークマスタ、リソース管理からのワーク能力、そして上位から受け取った生産スケジュールの要求に基づいたものとなります。ワークスケジュールの作成にあたっては、生産における制約や引当可能量を把握し、生産トラッキングから送られる実行中の作業の状況を加味します。また、上位の生産スケジューリングでは管理されない、中間仕掛品などを定義し利用する場合もあります。
ワークスケジュールの作成は、必要に応じて、あるいは定期的に実行されます。設備の停止、生産ラインの変更、原材料の予約状況の変更などの不測のイベントの発生時に再計算することもあります。ここで作成されるワークスケジュールが現実的かつ効率的であるためには、生産現場の詳細な情報が必要であるため、詳細生産スケジューリングは、サイクルエリアなどの生産現場に近い場所で実行されます。この際に、現在と近い将来の資源能力と引当可能量に関する情報を、生産リソース管理のアクティブティから受け取ります。

詳細生産スケジューリングは、有限能力スケジューリング（Finite Capacity Scheduling: FCS）の手順を利用しています。有限能力スケジューリングとは、生産リソースの能力に合わせて作業をスケジュールする方式です。この方式において、生産要求は生産リソースの引当可能能力を超えることはありません。このため、詳細生産スケジューリングは、フォワード割り付け（プッシュ型）、バックワード割り付け（プル型）といったスケジューリングプロセスが適用されます。また、優先度を用いた割り付け、工場の個別の制約の適用、ボトルネック資源に対するバッファ時間の割り当てなどのスケジューリング手法を用いることもあります。

詳細生産スケジューリングで生成されるワークスケジュールは、図13に示すように、個々のワークセンタまたは生産ラインに対して発行される複数のジョブオーダから構成されています。ここで、ジョブオーダとは、ワークセンタや生産ラインそれぞれに対する産業指示または作業指示といってよいでしょう。

図13 ワークスケジュールの例
このジョブオーダは、1つのワークセンタから見れば、ワーククリエストの数だけ、つま
り生産する品種やロットの数だけ受け取ることになります。これが、図13における資源ス
ケジュールとなります。また、ワーククリエストから見れば、エリア内で異なるワークセン
タをあらかじめ定義された生産順序に従って渡り歩く作業指示（ジョブオーダ）の集まりと
なります。また、当日分や翌日分など、ある期間についてジョブオーダをまとめたものは、
ジョブリストと呼びます。

詳細生産スケジューリングによって生成されたワークスケジュールを用いて、実際にワ
ークセンタにおいて生産を実行する判断を行うのが生産ディスパッチングです。生産ディ
スパッチングは、設備や作業者にジョブオーダを割り振り、生産の実行を指示します。割り
当てられたジョブオーダにより、各ワークセンタでは、装置や機械のセットアップ、グレー
ド切り替え、装置の洗浄、稼働率の設定、作業順序の決定などが行われます。

図14 生産ディスパッチングに関連する情報の流れ

生産ディスパッチングでは、単にジョブオーダをスケジュールに従って発行するのみで
なく、ワークスケジュールに示されていない、ローカルなリソースに対する実行の手配も
行います。また、ジョブオーダを開始するために、それらローカルリソースの開放を行う他
に、各ジョブオーダのステータス管理、実行順序の確認なども実施します。さらに、不測の
事態に応じた処理を行い、必要に応じて、詳細生産スケジューリングに通知するタスクや、
製造オペレーションマネジメント全般に関わるワークフローのバッファの管理に対応して、
保全オペレーション管理、品質オペレーション管理、在庫オペレーション管理のアクティビ
ティとも連携する場合があります。
APS（先進的計画とスケジューリング）

変化の激しい製造現場や、需要動向が不確実な環境では、詳細スケジューリングによって効率的なスケジュールを作成するとともに、計画（プランニング）機能とダイナミックに連携する、より先進的なプランニングとスケジューリングの活用が求められます。ISA-95では、日本からの提案をもとに、以下のようなAPS（Advanced Planning and Scheduling）の定義と特徴の例が示されています。

作業中心 BOM データ管理
従来のBOMは、製品やコンポーネントと資材の関係を、親品目と子品目とを直接接続する形で記述しています。これは親品目である最終製品の必要数量から、子品目である各資材の必要数量を計算するために利用されます。一方、製品の生産に必要な工程のルーティングは、レシピなどと同様に別途記述されており、それぞれのリソースの負荷計算などに利用されています。APSでは、従来のBOMとルーティング情報の「作業中心BOM」を用いて統合しています。この構造によって、作業をキーに、従来のBOMの持つ品目情報と、ルーティング表のつつりソース情報とを関連付けています。

現場制約の詳細モデリング
ジョブリストを作成するための詳細スケジューリングでは、高い信頼性が求められます。これを実現するために、スケジューラは生産現場における多様な制約を認識し、詳細スケジュールを立案する必要があります。従来のスケジューラは資源能力制約や先行制約などの比較的単純な制約のみを扱っていました。さらに、APSのスケジューラは製造資源や部品に関する制約、品目切り替え（洗浄）やルーティング（パイプの接続関係など）に関する制約、作業者やツールなどの副資源引当て制約、貯蔵スペース制約（タンク繰り）などのより詳細な制約を設定可能です。

有限能力と有限資材のスケジューリング手順
有限能力のスケジューリング（FCS）は、資源能力制約を扱い、資源の最大能力を超えないようなスケジュールを立案します。APSのスケジューリングロジックの特徴の1つに、有限能力と有限資材のスケジューリング機能（Finite Capacity and Inventory Scheduling: FCIS）が挙げられます。この機能により、製品生産に必要な資源が不足している場合、ガントチャート上にジョブオーダはスケジュールされません。FCISは貯蔵ゾーンやタンクの在庫を明示的に管理し、下流プロセスでの消費と、上流プロセスでの生産や購買との間の調整を行います。

ボトルネック指向スケジューリング
ボトルネック工程の性能が工場全体の性能に大きな影響を与えている場合、APSはボト
ルネック工程の性能を最大限に利用するスケジュールを生成し、それに他のプロセスを同期させます。たとえば、APS はまずボトルネック工程のスケジュールを最適化します。次に、上流プロセス、下流プロセスに対し、それぞれバックワードスケジューリング、フォワードスケジューリングを適用していきます。ボトルネック工程を、さまざまな外乱から守るためには、制約の理論（TOC）によるタイムバッファが有効となります。

基準生産計画（MPS）の“What-if？”シミュレーション
基準生産計画（MPS）は、販売部門と生産部門が連携するために重要な情報となります。しかしこの MPS が現実の工場の将来の状況を正しく表現したものでなければ効果はありません。APS は、各製品が客先に出荷される日程を、実際の工場から得られた詳細な生産情報を基に算出します。こうした設定された詳細なデータの信頼性は、“What-if？”シミュレータとしても利用可能な詳細スケジューリング機能を用いて検証されます。また、こうして得られたシミュレーションの結果は、MPS と併用して実行スケジュールとして利用されることもあります。

ダイナミック・フルペギング
従来の一般的な MRP システムでは、特定のジョブオーダや生産ロットに遅延やその他の問題が起こった時に、最終顧客オーダに対する直接的な影響を知ることができません。これは計画の引当てがシングルペギングであることが原因です。一方、固定的なフルペギング（製番方式）では、工場のオペレータは各作業の最終顧客を知ることができますが、オーダの組み換えやロットまとめなどに不向きで、効率的ではありません。APS におけるダイナミック・フルペギングは、ロットまとめなどを行っていても、最終顧客オーダと実際にジョブオーダやロットとの関係を示すことができます。さらには、緊急時や優先度の高いオーダが入った時には、その関係を付け替えることも可能です。

メタヒューリスティクスによる最適化
製造業における最適な計画を作成するために、APS では遺伝的アルゴリズムやタブサーキャスターチなどの最適化手法を用います。プランニング問題やスケジューリング問題には多様な制約、多様な判断要素があり、数学的組み合わせ爆発と呼ばれる状況となり、計算結果が求められない場合があります。しかしながら、メタヒューリスティクスとよばれるこれらの最適化アルゴリズムでは、計画やスケジュール立案者に対して、ほどほど最適な実行可能解を現実的な計算時間で提供してくれます。
第4章 アクティビティと連携情報

経営システムと製造システムのドメインにあるさまざまな機能を実現するアクティビティと、業務間でやりとりされる情報を示します。

生産コントロール機能

製造システムのドメインでは、図5に示したように、生産コントロール機能が中核的な位置づけとなっています。この生産コントロールの機能は、さらにプロセス技術サポート、生産オペレーション管理、そして生産オペレーション計画の3つに分けることができます。以下に、それぞれのサブ機能について、そこに含まれるアクティビティを示します。

表3 生産コントロールのアクティビティ

<table>
<thead>
<tr>
<th>主な機能</th>
<th>アクティビティ</th>
</tr>
</thead>
<tbody>
<tr>
<td>プロセス技術サポート</td>
<td>●改修または保全要求を発行する。</td>
</tr>
<tr>
<td></td>
<td>●保全機能とエンジニアリング機能を協調させる。</td>
</tr>
<tr>
<td></td>
<td>●オペレーション機能および保全機能に技術標準と手段を提供する。</td>
</tr>
<tr>
<td></td>
<td>●設備およびプロセスの性能をフォローアップする。</td>
</tr>
<tr>
<td></td>
<td>●運転員に対する技術支援を行う。</td>
</tr>
<tr>
<td></td>
<td>●技術開発をフォローアップする。</td>
</tr>
<tr>
<td>生産オペレーション管理</td>
<td>●スケジュールと仕様に従って製品を生産する。</td>
</tr>
<tr>
<td></td>
<td>●生産、プロセス、資源情報を報告する。</td>
</tr>
<tr>
<td></td>
<td>●設備をモニタし、運転の計測値を検証して、保全の必要性を決定する。</td>
</tr>
<tr>
<td></td>
<td>●保全のために設備を準備し、保全を行った後使用できる状態に戻す。</td>
</tr>
<tr>
<td></td>
<td>●生産設備および制御設備の診断およびセルフチェックを行う。</td>
</tr>
<tr>
<td></td>
<td>●サイトまたはエリア内での生産のバランスをとって最適化する。</td>
</tr>
<tr>
<td></td>
<td>●ローカルなサイトまたはエリアの作業者管理および文書管理を行う。</td>
</tr>
<tr>
<td>生産オペレーション計画</td>
<td>●生産スケジュールに基づき直近の計画を立てる。</td>
</tr>
<tr>
<td></td>
<td>●原料の引当可能性と製品の貯蔵可能量からスケジュールを確認する。</td>
</tr>
<tr>
<td></td>
<td>●設備と作業者の引当可能性からスケジュールを確認する。</td>
</tr>
<tr>
<td></td>
<td>●引当可能性のパーセントを決定する。</td>
</tr>
<tr>
<td></td>
<td>●設備の停止、工数と原料の引当可能量に基づき、時間単位で計画を更新する。</td>
</tr>
</tbody>
</table>
ドメイン境界に位置する機能

経営システムのドメインと製造システムのドメインとの境界に位置する機能では、その境界およびインタフェースをいかに設計し、それぞれのドメインに対してどのように機能を割り振るかは、企業の個別事情による部分が多いともいえます。こうしたドメインの境界に位置づけられる機能としては、生産スケジューリング、資材およびエネルギー管理、品質保証、製品在庫コントロール、そして保全管理などがあります。表4に、各機能におけるアクティビティを示します。

表4 ドメイン境界に位置するアクティビティ

<table>
<thead>
<tr>
<th>主な機能</th>
<th>アクティビティ</th>
</tr>
</thead>
</table>
| 生産スケジューリング | ● 生産スケジュールを決定する。
● 長期の資材要求を明確化する。
● 最終製品の包装スケジュールを決定する。
● セールスのために引当可能な製品を決定する。 |
| 資材およびエネルギー管理 | ● 資材およびエネルギーに関わる在庫、移送、品質を管理する。
● 短期および長期の要求に基づいて資材およびエネルギーの調達要求を生成する。
● 資材およびエネルギーの使用に関する受払およびロスを計算し、報告する。
● 入庫資材およびエネルギーの供給を受け入れ、品質保証テストを要請する。
● 検収した資材およびエネルギー供給の調達を通知する。 |
| 品質保証 | ● 資材を試験して等級分けを行う。
● 資材品質に対する標準を設定する。
● 生産技術、マーケティングおよびカスタマーサービスからの要求に応じて、製造および試験ラボに標準を発行する。
● 資材品質データを収集および維持する。
● 下流工程に対して、資材の使用（配送、または次工程への搬送）を許可する。
● その製品が標準プロセス条件に従って製造されたことを認証する。
● 出荷前の品質保証のため、顧客要求に対応した統計的品質管理を用いて製品データをチェックする。
● 再評価によるプロセス改善のために、資材のバラツキをプロセス技術サポートに伝える。 |
製造オペレーションマネジメント入門

表 4 ドメイン境界に位置するアクティビティ (続き)

<table>
<thead>
<tr>
<th>主な機能</th>
<th>アクティビティ</th>
</tr>
</thead>
</table>
| 製品在庫管理 | ● 完成品の在庫を管理する。
 | ● 製品販売予定に従って、具体的な製品を確保する。
 | ● 配送スケジュールに従って包装済最終製品を出荷可能とする。
 | ● 生産スケジューリングに在庫を報告する。
 | ● 製品原価管理に収支およびロスを報告する。
 | ● 製品出荷管理の要請に応じて、商品の積み込み/出荷を段取りする。 |
| 保全管理 | ● 既存設備を保全する。
 | ● 予防保全プログラムを提供する。
 | ● 故障を予測するために、設備を監視する。これにはセルフチェックや診断プログラムを含む。
 | ● 材料や交換部品の調達要求を出す。
 | ● 保全原価報告書を作成し、外部の契約作業者と調整を行う。
 | ● パフォーマンスおよび信頼性に関する状態および技術的フィードバックを、プロセス技術サポートに提供する。 |

経営システム側の機能

経営システムのドメインに位置づけられる機能であって、ドメインの境界には接していないものについては、製造システムドメインの機能との直接の情報のやりとりは存在しません。表 5 に、それらの機能のアクティビティについて示します。

表 5 経営システム側でのアクティビティ

<table>
<thead>
<tr>
<th>主な機能</th>
<th>アクティビティ</th>
</tr>
</thead>
</table>
| 調達 | ● 原材料、消耗品、交換部品、ツール、設備、およびその他の必要な資材をサプライヤに発注する。
 | ● 調達の進捗をモニタし、調達要求者に報告する。
 | ● 物品が到着し確認が終われば、支払いのための受領書を発行する。
 | ● ベンダーに発注するために、原材料、交換部品などの個別要求を発注単位にまとめて処理する。 |
| オーダ処理 | ● 顧客オーダを処理し、受け付けて確認する。
 | ● 販売予測を行う。
 | ● 特採と予約処理を行う。
 | ● 売上総利益を報告する。
 | ● 生産オーダを決定する。 |
製品出荷管理
- 受注したオーダ要求に従って、製品出荷のために輸送手段を手配する。
- 輸送会社と交渉して発注する。
- 出荷場に荷揚げして、出荷のための資材を支給する。
- 出荷のための必要文書（船荷証券（BOL）や通関手続き）を準備する。
- 出荷を確認し、請求書発行を経理に要請する。
- 製品出荷計算に出荷原価を報告する。

製品原価管理
- 製品の総原価を計算し報告する。
- 改善のために製品原価の実績を生産コントロールに報告する。
- 生産原価目標を設定する。
- 経理に伝達するために、原材料、作業者、エネルギー、その他の原価を収集する。
- 生産総原価を計算し報告する。照合するために製造原価の実績を生産コントロールに報告する。
- 資材およびエネルギー供給と分配の原価目標を設定する。

研究開発と生産技術
- 新製品の開発を行う。
- プロセス要件の定義を行う。
- 製品を生産するという点から、製品要件の定義を行う。
- 製品を生産するという点から、設備と資源の要件の定義を行う。

マーケティングと販売
- 販売計画を立てる。
- マーケティング計画を立てる。
- 価格を設定する。
- 製品に対する顧客要求を判断する。
- 製品への要求事項および標準を確定する。
- 顧客と交流する。

機能間の情報フロー

異なる業務機能の間での連携を行うためには、それらの間でやりとりされる情報をモデル化し、相互にそれらの情報を扱うことができるようになっている必要があります。図5に示した機能間の情報フローを、以下の表6に示し、それぞれの情報について説明します。
表6 機能と情報の関係

<table>
<thead>
<tr>
<th>情報の種類</th>
<th>機能</th>
<th>製品原価管理</th>
<th>研究開発および生産技術</th>
<th>生産コントロール</th>
<th>生産スケジューリング</th>
<th>資材およびエネルギー管理</th>
<th>製品出荷管理</th>
<th>製品在庫管理</th>
<th>品質管理</th>
<th>保全管理</th>
<th>販売および物流</th>
<th>調達</th>
<th>販売および販売</th>
<th>マーケティング</th>
<th>顧客</th>
</tr>
</thead>
</table>
表6では、行に情報の種類を設定し、列にそれらの情報を扱う機能を設定しています。表の中では、情報の流れの起点となる機能を◎記号、情報の流れの終点であり、その情報を利用する機能を○記号で示しています。矢印は、起点から終点までを結ぶものであり、対応する列はその情報には関与しません。

また、表7には、表6にあるアクティビティ間で交換される情報について、それぞれ簡単な説明を載せています。これらの情報について、データとして表現可能のように、より標準的な記述方法としていく必要があります。現時点では、その一部が、オブジェクトモデルとして、ISA-95の第2部で規定されています。

<table>
<thead>
<tr>
<th>情報</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 生産実績および原価</td>
<td>生産に関する実際的材料、作業者時間、エネルギーおよび設備の使用実績。製品、副産物、連産品およびスクラップごとに管理される。</td>
</tr>
<tr>
<td>2 生産原価目標</td>
<td>資源についての製品またはプロセスに関連する原価目標。材料、作業者時間、エネルギー、設備使用または実績原価を含む。</td>
</tr>
<tr>
<td>3 製品・プロセスのノウハウ</td>
<td>標準作業手順、レシピ、クリティカルな安全限度および分析方法など。これは、オペレーションからの要求に応じて生成されるか、新製品および新プロセスに対応して研究、開発および生産技術において生み出される。</td>
</tr>
<tr>
<td>4 製造・プロセスの情報要求</td>
<td>新製品または修正された製品の定義およびプロセス定義に対する問い合わせ。</td>
</tr>
<tr>
<td>5 製品・プロセス技術フィードバック</td>
<td>生産設備および製品のパフォーマンスに関する情報。この情報は、一般に、オペレーションコントロールに対するパフォーマンステストおよび検討要求の結果である。</td>
</tr>
<tr>
<td>6 生産オーダ</td>
<td>工場に対するワークオーダを定めることになる受け入れ済みの顧客オーダに関する情報。</td>
</tr>
<tr>
<td>7 引当可能性</td>
<td>新たなオーダへ引当可能な工場の生産能力や在庫に関する情報。</td>
</tr>
<tr>
<td>8 完成品在庫</td>
<td>完成品の現在在庫に関する情報であり、配送または出荷に引当可能な完成品の合計、数量、品質、ロケーション情報を含む。新たな生産のスケジューリングに利用される。</td>
</tr>
<tr>
<td>9 包装スケジュール</td>
<td>顧客、在庫などへの配送のために、1つ以上の最小在庫管理単位（SKU）で生産品目をまとめたものとして作成される。</td>
</tr>
</tbody>
</table>
表7 アクティビティ間の情報（続き）

<table>
<thead>
<tr>
<th>情報</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 スケジュール</td>
<td>どの製品が製造されるのか、どのくらい作るのか、それをいつ作るのかについての情報</td>
</tr>
<tr>
<td>11 計画に対する生産</td>
<td>何が作られ、どのくらい作られ、どのように作られたか、いつ作られたかなど、計画の実行による現在の生産および完了した生産結果に関する情報</td>
</tr>
<tr>
<td>12 生産能力</td>
<td>生産設備の、現時点の引当済み、引当可能および引当対象外の能力量。資材、設備、作業者およびエネルギーも含む。</td>
</tr>
<tr>
<td>13 短期の資材およびエネルギー要求</td>
<td>現在スケジュール済みまたは実行中の生産に必要とされる資源に対する要求。期限を含む資材の要求、資材の予約、実際の消費の指標、予約の解除、消費量の調整など。</td>
</tr>
<tr>
<td>14 資材およびエネルギー在庫</td>
<td>短期の資材計画や生産で用いられる現在引当可能な資材およびエネルギー。一般には資材を扱う。</td>
</tr>
<tr>
<td>15 資材およびエネルギーオーダ要求</td>
<td>現在の引当可能量に基づいて、短期および長期の要求を満たすのに必要な将来の資材およびエネルギーの必要量を決定する。</td>
</tr>
<tr>
<td>16 入庫オーダ確認</td>
<td>資材またはエネルギーが受け取られたことの通知。</td>
</tr>
<tr>
<td>17 長期の資材およびエネルギー要求</td>
<td>計画された生産で必要とされる資材およびエネルギー資源を時間順に記述したもの。</td>
</tr>
<tr>
<td>18 資材およびエネルギー受領報告</td>
<td>資材またはエネルギーが受領されたことの通知と、原価計算に必要な追加の情報。これには、BOL、安全データシート（SDS）および分析証明書（COA）を含む場合もある。</td>
</tr>
<tr>
<td>19 品質保証結果</td>
<td>原材料、工程内材料または製品に対して行われる品質検査の結果である。製品で実施されるテストまたは個別のセグメントで実施される工程内テストに関係する。品質保証結果には、工程内特別採用の許可を含むことがある。</td>
</tr>
<tr>
<td>20 標準仕様と顧客要求</td>
<td>当該顧客ニーズを満たす製品仕様の具体的な値である。これでは、特定の加工仕様と材料特性を含めるのが一般的である。この情報は、結果として、資材、設備および作業者特性と関連テストに対する変更または追加をもたらすことがある。</td>
</tr>
<tr>
<td>21 工程内特別採用要求</td>
<td>正常な製品仕様が維持されているが、正常な生産手順で定めた資材、設備または品質測定基準からの逸脱があった場合の特別採用の要求である。この要求に対する回答は、品質保証結果の中にある。</td>
</tr>
<tr>
<td>情報</td>
<td>説明</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>22 プロセスデータ</td>
<td>特定の製品および生産要求に関連する、生産プロセスに関する情報である。プロセスデータは通常、品質機能の一部として品質保証で用いられ、また製品在庫管理で用いられる。製品在庫管理ではこの情報が完成品納品物の一部として必要である。</td>
</tr>
<tr>
<td>23 製品・プロセスの要件</td>
<td>製品を製造する方法を定める。これは、通常、バッチ製造におけるゼネラルレシピまたはサイトレシピ、ディスクリート製造における組立てインストラクションと図面、連続製造のプロセス記述に対応する。</td>
</tr>
<tr>
<td>24 特別採用完成品</td>
<td>正常な製品仕様書からの逸脱に対する承認である。特別採用完成品は、標準仕様と顧客要求仕様で決定された仕様からの顧客と協議した逸脱である場合もある。</td>
</tr>
<tr>
<td>25 保全要求</td>
<td>保全機能に対する要求である。これは、計画された要求か、または計画外の事態（たとえば、変圧器への落雷）による計画外の要求である。</td>
</tr>
<tr>
<td>26 保全結果報告</td>
<td>保全作業結果報告は保全要求に対する応答であり、記録された状態、または日常保全、スケジュール化された保全、または計画外保全の完了である。</td>
</tr>
<tr>
<td>27 保全技術報告</td>
<td>通常、生産設備のパフォーマンスおよび信頼性に関する情報で、実施された保全に関するレポートを含む。保全レポートには、計画保全、予防保全、予知保全を含む。</td>
</tr>
<tr>
<td>28 保全標準および方法</td>
<td>通常、保全がその機能を遂行する際に用いる認められた方針および手続きである。</td>
</tr>
<tr>
<td>29 保全関連調達要求</td>
<td>保全タスクを実行するために必要とされる資材および補給品に関する情報である。</td>
</tr>
<tr>
<td>30 出荷指示</td>
<td>製品の出荷承認についての情報である。</td>
</tr>
<tr>
<td>31 出荷確認</td>
<td>製品の出荷実績についての情報である。</td>
</tr>
</tbody>
</table>
第 5 章 事例による説明

ISA-95 を実際のシステム構築に活用するためには、簡単な事例を用いてモデル化の方法と標準の適用のしかたを説明します。

果汁入り飲料製造工場

果汁入り飲料製造工場の事例を取り上げます。図 15 は、その受入工程から充填工程までの製造設備と物の流れを示した概略図です。

受入工程では個装資材は倉庫に、液体原料は受入タンクに保管され、作業指示で指定された原料が計量され、オレンジエキスとしてストレージタンクに一時保存されれます。調合工程ではオレンジエキス、液糖、その他の原料が所定の割合で調合され、滅菌処理されたのち、充填工程に移送され、充填機にかけられ、缶やペットボトルに充填されます。
この工場の生産現場では、次のような課題がありました。

■ （課題1）製品品質が安定しない。生産データや作業記録を収集して、製品品質が常に一定になるような管理ができていない。
■ （課題2）製品のトレーサビリティが実現できない。原料や生産データと、出荷された製品との紐付けができない。
■ （課題3）製品在庫や原料在庫データと生産スケジュールが連携できずに、生産効率が悪く生産コストが下がらない。

こうした課題を解決するために、以下では、ISA-95のリファレンスモデルを参考に、対象となる業務モデルをアクティビティと情報フローの両面から詳細化していき、情報システムの設計を行っていきたいとおもいます。

アクティビティと情報フローの解析

ISA-95では、全体をいくつかの業務機能の単位でとらえ、それらの業務機能間での情報フローに着目します。そこで、まず、図16では、本事例の内容を、図5で示した機能群のモデルに対応させて、構成するアクティビティを整理しています。また、それらの業務間の情報フローを図17に示します。
特に、製造オペレーションマネジメントのドメインについて、ISA-95で定義された4つのカテゴリを利用して、生産オペレーション管理、保全オペレーション管理、品質オペレーション管理、そして在庫オペレーション管理の4つのカテゴリごとの視点から業務内容を検討します。

生産オペレーション管理
オーダ処理機能は、製品在庫管理機能と連携しつつ、生産スケジューリング機能に対して、生産オーダを決定します。生産コントロール機能は計量作業や投入作業に対して作業指示を行うとともに、生産実績を収集し、予実管理を行います。また、資材およびエネルギー管理機能との間で資材入荷の予定と実績のバランスを取るため、生産スケジュールに応じた原材料の要求、入庫データなどを確認します。

品質オペレーション管理
計量作業時に原材料の計量実績データを収集し、投入作業時に投入実績データを収集し、果汁入り飲料のロット毎の生産実績データを蓄積し、製品が標準プロセス条件に従って製造されたことを認証します。また、完成品と生産実績データとの紐付けを行い、バックトレースを可能にするため、製造日付、ロット番号、製造設備、作業者、原材料データなどの生産実績データを統合的に管理します。

在庫オペレーション管理
資材の在庫管理では、入庫オーダに従い、入庫資材の供給を受け入めて生産コントロール機能からの原材料の要求に対応します。また、製品在庫管理機能では製造プロセスの充填機に設置されたデータ収集装置から充填本数などのデータを収集し、完成品の在庫データを
管理するとともに、オーダ処理機能や製品出荷管理機能との連携により、在庫データを更新します。

保全オペレーション管理

保全業務では、計量や投入作業場での機器の稼働状況や製造設備、装置に関する運転状況を管理します。緊急のトラブルに備えた定期的な保全の実施はもとより、機器の稼働状況を定常的に監視することによる予知保全を行うこともあります。

製造オペレーションマネジメントのドメインにおいて、さらにより具体的なアクティビティを想定し、情報フローを8つのMOMアクティビティのテンプレートに対応して記述すると、図18のようになります。このようにして、アクティビティに対応する機能と情報フローを明確にし、さらに、現在の情報システムの構成も加味することで、新たに構築すべき情報システムの基本構成ができあがります。

図18 製造オペレーションマネジメントにおける情報フロー

情報システム構築の流れ

この事例の説明では、ISA-95で示されたアクティビティとモデルを踏まえて、以下の手順で経営システムと製造システムの構架を検討していきます。以下のステップに従えば、ステップ1からステップ3の一部についての手順は、すでに完了したことになります。
ステップ１ 対象問題のドメインと階層の確認

機能の階層モデル、設備の役割階層モデルなどに従い、対象とする問題のドメインを再確認します。製造オペレーションマネジメントのドメインは、機能の階層モデルにおけるレベル３となります。さまざまなアクティビティから、ドメインの境界を意識して、レベル３のアクティビティを再確認します。

ステップ２ 生産現場での課題の調査と整理

生産現場の現状の製造オペレーションを調査するとともに、経営システムと製造システムの全体の観点から、解決すべき生産上の課題を整理し整備します。ここでは、特に、アクティビティが利用する情報の流れに着目し、パフォーマンスを低下させている要因を分析します。

ステップ３ 個々の課題に対する対応策の検討

製造オペレーションマネジメントにおける4つのカテゴリーについて、それぞれの視点から問題を検討し、情報システムによる対応策を検討します。また、8つのMOMアクティビティのテンプレートと比較し、そこでどのような情報がアクティビティ間で受け渡されているかを整理します。これは、対応策を検討する上での大きなヒントとなります。

ステップ４ 対応策の具体化とシステムの設計

ISA-95のリファレンスモデルを用いて、さまざまな機能と情報フローの関係が記述できたら、その結果を、現実の組織や物理的な設備、そして現有の情報システムに重ね合わせます。不足している部分、あるいは大きく異なる部分が情報システムとして手を加える部分となります。それらをサブシステムとして追加したり、置き換えたり、部分的に改修するなど、具体的な対策に落とし込んでいきます。

ステップ２において挙げられている3つの課題を、カテゴリーに対応させてみましょう。まず、課題１「製品品質が安定しない。生産データや作業記録を収集して、製品品質が常に一定になるような管理ができていない」は、品質オペレーション管理と保全オペレーション管理の課題といえます。また、課題２「製品のトレーサビリティが実現できない」は、品質オペレーション管理の課題です。そして、最後の課題３「製品在庫や原料在庫データと生産スケジュールが連携できずに、生産効率が悪く生産コストが下がらない」は、生産オペレーション管理と在庫オペレーション管理の課題となります。

この結果をもとに、ステップ３では、個々の課題に対する対応策を、カテゴリーごとに検討します。表8に、その検討結果の一覧を示します。そして、最後のステップ４で、ここで得られた対応策をもとに、具体的な情報システムを設計し、構築のシナリオを策定します。
表8 4つのカテゴリに対応づけた情報システムとしての対応策

<table>
<thead>
<tr>
<th>4つのカテゴリ</th>
<th>生産現場の課題</th>
<th>情報システムとしての対応策（例）</th>
</tr>
</thead>
<tbody>
<tr>
<td>生産オペレーション管理</td>
<td>課題3</td>
<td>生産実績が生産オーダや完成品在庫、原料在庫と柔軟に連動するシステムとするために生産履歴がリアルタイムに生産管理システムに通知され、オーダ管理システムや資材管理システムと密な連携ができる仕組みを検討する。</td>
</tr>
<tr>
<td>品質オペレーション管理</td>
<td>課題1</td>
<td>原料の計量値や投入量に間違いが発生しないような作業指示ができるように計量作業や投入作業のシステム化を検討する。</td>
</tr>
<tr>
<td></td>
<td>課題2</td>
<td>製品が標準プロセス条件に従って製造されたことを認証できるように原料の計量データや投入データを収集・管理し、ロット毎の品質データのバックトレースなどの履歴管理が可能な仕組みを検討する。</td>
</tr>
<tr>
<td>在庫オペレーション管理</td>
<td>課題3</td>
<td>充填工程で充填本数を自動計算し、製品在庫をリアルタイムに把握し、完成品の在庫管理を行うと共に製品出荷システムとも連携して製品在庫管理システムと協調できる仕組みを検討する。</td>
</tr>
<tr>
<td>保全オペレーション管理</td>
<td>課題1</td>
<td>保全管理として、定期的な設備改修に加えて、製造設備の稼働データを収集し、稼働状態に応じて、予知保全計画を策定し、生産システムの稼働に影響を与えない仕組みを検討する。</td>
</tr>
</tbody>
</table>

図19に、事例に対応する情報システムの構成を示します。ここでは、新たに計量サブシステム、投入サブシステム、そしてトレースサブシステムを構築し、関連する業務アプリケーションおよびデータベースを整備するという方向性が示されました。さらに、そのための必要なデータや、既存のシステムとのデータ連携の方法などについても示唆が得られました。

ここで取り上げた事例は、仮想的なものであり、実際のプロジェクトでは、さらに複雑で規模の大きなモデルとなるかもしれません。しかし、ISA-95の概念を適用することで、その全体としての構成が定まり、必要に応じて、モデルを詳細化していくといったアプローチが可能となります。
図19 あるべき情報システムの構成
終章

ISA-95 標準の意味やインパクトについて、製造オペレーションマネジメントのこれからの展望とあわせて解説します。

「つながる工場」の未来

製造業はもはや企業単独では製品を完成することができません。サプライチェーンやエンジニアリングチェーンが網の目のようにつながり、企業間をモノや情報が頻繁に行き交う時代となっています。そしてさらに、こうした流れは、国や地域を超えて、ポーダレスに展開していくと我々は思います。価値の連鎖、つまりバリューチェーンが、モノを製造するフェーズ、生産ラインや工場を立ち上げるフェーズ、そして製品を販売した後のアフターサービスのフェーズなど、さまざまなフェーズにおいて業務アクティビティをつなげようとしています。

こうしたつながる工場、つながるものづくりを支えるためには、企業の業種、業態を超え、さまざまなアクティビティが、データを介して情報システム上で連携する必要がありません。それぞれが異なる要求、異なる現実を対象としたアクティビティが、同じ形式のデータを介してつながるためには、標準化技術が欠かせません。ただし、ここで必要となる標準は、型にはまった同じ作業や形式を強要するといった厳密なものではなく、ゆるやかな標準、つまりリファレンスモデルです。本書で解説した ISA-95 は、工場におけるオペレーションマネジメントに関わる国際的に認知されたリファレンスモデルです。

多くの工場の管理部署あるいはものづくりの現場では、直接、間接を問わず、それぞれの業務におけるアクティビティが、必要な情報を、必要なときに、必要な形で提供されることを望みます。しかし実際には、目に見えない情報の世界での業務連携、データ連携のわずかから、多くのムダが発生しています。もし、こうした連携の問題が解決すれば、品質や納期やコストといった経営指標に大きく貢献するでしょう。工程間、部門間、そして企業間で、情報システムが柔軟に連携することによって、企業が置かれる ICT とのものづくりの融合という新しい時代の中で、大きな飛躍が期待できます。
情報連携と標準の役割

情報システムがお互いに連携するためには、標準としてのリファレンスモデルが必要となります。なぜなら、相互に連携する情報システムを、その都度、連携のためのインタフェースを決定し、それにあわせて構築することは、時間とコストと信頼性の点で、おそらく現実的ではないからです。また、レガシーシステムへの対応や、得意先の企業の事情に対応して、その場その場で、接続仕様を設定していると、やがて情報システムのメンテナンスができなくなってしまいます。第三者としての標準化団体が、リファレンスモデルを提示し、できる限りそれに合わせることが、最終的には情報システムのオーナーである製造業のメリットにつながります。

つながるためのリファレンスモデルは、接続のための仕様でありながら、それに厳密に合わせる必要はありません。リファレンスモデルと基準として、個々の事情に合わせて、接続する当事者間の合意の上で変更することが許されます。そして、一般に、こうしたリファレンスモデルそのものも、修正または新規に派生することがあります。

これまで、たとえば EDI（受発注などの電子データ交換）におけるいくつかの標準化では、リファレンスモデルではなく、接続規約として、データ項目などを厳密に決定していました。そのため、仕様そのものが膨大になり、利用すべき項目の重複や欠落によって、かえって使いづらい標準仕様とされる危険性がありました。これに対して、リファレンスモデルでは、詳細の接続仕様の最終形式は決めません。それぞれの接続仕様は、このリファレンスモデルを参考として決定し、リファレンスモデルとの差分を明示することで、ゆるやかなつながりが確保できます。

このように、リファレンスモデルによって可能となる業務連携、データ連携は、ボトムアップつながるしくみといえます。そして、こうしたしくみを実現するためには、常に業務アクティビティを見直し、連携のためのデータ形式を見直し、そしてリファレンスモデルそのものも見直すという継続的な取り組みが不可欠となります。わが国のものづくりが得意とするカイゼンアプローチが、こうした観点から大いに役に立つと予想できます。

おわりに

ISA-95 は、経営システムドメインと製造システムドメインとのインタフェースを定義することで、ERP（基幹情報システム）と工場の情報システムとをつなぐことを目的として、1990 年代の後半から 2000 年代にかけて策定されました。当時と、現在とでは、インターネットの普及や、ハードウェアやデバイスの低価格化など、大きく環境が変わっています。
IoT（モノのインターネット）や CPS（サイバーフィジカルシステム）といったキーワードとともに、ICT がものづくりの現場に急速な勢いで入って来ることが予想されています。

しかし、実際のところ、ERP と工場システムが柔軟につながっているか、あるいはそれらをつなぐしくみが容易に実現できそうかといえば、解決すべき問題はまだまだ多そうです。業務の標準化や、データの標準化は、物理法則が中心のモノやデバイスの世界とは異なり、ひとの習慣やノウハウ、組織の隠されたルールなど、さまざまな暗黙知に支配されているからです。こうした理由もあって、日本の工場では、特に、生産現場の ICT 化が遅れているといわれます。しかし、これでは、ものづくりと ICT の統合の流れ、さらにいえば第 4 次産業革命の流れにも乗り遅れ、製造業の存在そのものが危うい状況になりかねません。

つながるための標準では、これまでのように、標準に業務のアクティビティを合わせるのではなく、標準をベースとして独自の特徴を整理し表現するという発想に切り替える必要があります。それぞれが、お互いの個性を認め合ったうえで、共通的な部分で連携するということで、それぞれにとってメリットが利いて、Win-Win の関係を構成することができます。多くの製造業が、こうしたしくみを積極的に取り入れると同時に、さらに一歩進んで、それぞれの業種、業態において、リファレンスモデルそのものを作り上げるというリーダー企業が現れることも合わせて期待したいと思います。

本書では、現時点で国際標準となっている ISA-95 について解説し、リファレンスモデルの利用方法およびその重要性について解説しました。今後、こうしたリファレンスモデルの利用が進み、製造業のさまざまな業務が ICT によって連携していく中で、その具体的な連携の内容は、やはり色濃く日本のものづくりを反映したものであってほしいものです。製造業におけるリファレンスモデルがこれからさらに進化していくとすれば、わが国発のリファレンスモデルがグローバルに成長するのも、遠い未来のことではないかもしれません。
用語解説

ISA-95において用いられている用語について、その内容と意味を簡単に解説します。

エリア (area)
エリアは、ISA-95が定義する設備の役割階層の1つとして定義された概念です。階層の上位からエンタープライズ、サイトの順で定義され、その下位にあってサイトを構成するのがエリアとなります。これらは、物理的、地理的、または論理的なグループです。

エンタープライズ (enterprise)
エンタープライズとは、製品またはサービスなどのアウトプットを提供するために明示されたミッション、あるいは目標や目的を共有する組織です。一般的には、独立した企業がエンタープライズに対応します。

サイト (site)
サイトは、ISA-95が定義する設備の役割階層の1つとして定義された概念です。企業による意思決定が及ぶ範囲の全体をエンタープライズとすると、その下位にあってエンタープライズを構成する単位がサイトとなります。これらは、物理的、地理的、または論理的なグループです。

資材ロット (material lot)
資材ロットは、リソースである資材 (material class)の実体を表します。したがって、資材ロットは、生産のたびに消費または生成され、必要に応じて、それらの物理的な現物を一意に識別可能となります。資材ロットにより、実際の数量や総量、その現在の状態や個別の特性値を表現します。

ジョブオーダ (job order)
ジョブオーダは、製造オペレーションマネジメントにおいて、作業の実行を指示するための最小の単位となります。ジョブオーダは、特定のワークセンタに対してディスパッチされます。ある時点で実行可能なジョブオーダの集まりを、ジョブリストと呼びます。

生産 (production)
生産という用語は、製造よりも限定された概念であり、製造におけるより具体的、物理的な加工や組立などの行為を指します。ISA-95では、生産は、製造オペレーションマネジメントの4つのカテゴリの1つです。
生産ユニット（production unit）
生産ユニットは、バッチプロセスにおいて、中間製品または最終製品を生産するために、1つ以上の供給原材料を、変換し、分離し、反応させる一群の生産設備です。設備の役割階層において、エリアの下位に位置づけられるワークセンタに対応しています。

生産ライン（production line）
生産ラインは、ディスクリート型の生産において、製品または製品群をある数量製造するために占有される一連の設備です。設備の役割階層において、エリアの下位に位置づけられるワークセンタに対応しています。

製造（manufacturing）
ISA-95 に限らず欧米では、製造という用語は、生産よりも広い概念であり、ものづくり全般を指します。日本国内では、製造という用語は、どちらかといえば物理的にモノの加工や組立などを行う行為としてとらえる場合が多いですが、これとは対称的です。

製造オペレーションマネジメント（MOM）
製造オペレーションマネジメントは、製造システムドメインから、制御レベルに相当する機器やコントローラなどを除外した部分を対象とした管理のしくみです。ISA-95 の機能レベルでは、レベル 3 に相当します。一般的な製造実行システム（MES）が対象とする範囲よりも広い範囲を扱います。

製造資源表（bill of resources）
製造資源表は、製品一単位を生産するのに必要となるすべてのリソースと、それらが生産プロセスでいつ必要となるかについての情報です。製造資源表は、モデル上、BOM の情報を含んでいます。つまり、特定の製品について必要となるすべてのリソースとして、BOMが定義している資材のみではなく、設備や作業者なども指定しています。

製造システムドメイン（MO&C domain）
製造システムドメインは、経営システムドメインからの要求を受けて、製造に関するオペレーションを実行します。これは、ISA-95 の機能レベルでいうとレベル 0、1、2 およびレベル 3 に相当します。製造オペレーション＆コントロール（MO&C）ドメインとも呼ばれます。

能力（capability）
能力とは、リソースが何らかのアクションによって、要求されたタスクを成し遂げられる力です。ISA-95 では、特にそのなかで定性的に記述できるものを能力と呼び、定量的に計算できる能力量と区別しています。

能力量（capacity）
能力量は、リソースが何らかのアクションを実行できる力の尺度です。リソースのキャパ
シティに相当します。能力は、設備や作業者の場合、ジョブオーダを実行することで、その一部が消費され、利用可能な能力が変化します。

プロセスセグメント（process segment）
プロセスセグメントは、ISA-95 の独自の概念であり、設備、作業者、そして資材といったリソースの利用パターンを、複数の異なる製品で繰り返し利用する範囲で切り出した単位です。また、個々のオーダに対応して、その製品固有の生産方法が存在する場合には、ISA-95 では、それを製品セグメントと呼んでいます。

BOM（bill of material）
BOM（部品表または配合表）は、製品一単位を生産するのに必要な全てのサブアセンブリ、部品、材料などの資材、およびその所要量の一覧です。この情報は、製品ごとに、あらかじめ設計によって決定されています。ただし、実際のオーダごとに、この内容を個別に設定する場合もあります。

リソース（resource）
リソースは、エンタープライズによって所有され、製造オペレーションマネジメントにおける何らかのアクティビティを実行する能力を提供するものです。リソースの例として、作業者、設備、資材が挙げられます。設備の役割階層として定義されるエリア、サイト、そしてエンタープライズもリソースの特殊形ということができます。
ものづくり APS 推進機構（APSOM）とは

特定非営利活動法人ものづくり APS 推進機構（APSOM）は、わが国の製造業のものづくりのさらなる発展のために活動する非営利団体です。APSOM は、これまで製造業が培ってきたもののづくりに関する技術や手法を、ICT を用いてより高度化し、企業や業種を超えて相互に連携させた新しいネットワーク時代のものづくりを提案しています。APSOM の活動は、以下の 3 つの目的に向かっています。

- 日本のものづくりを活かす情報技術を開発し世界にむけて発信する。
- 現場で生まれる知識やノウハウが活用可能な ICT のインフラを構築する。
- 情報連携によりアプリケーションを有機的につなぎ全体最適を実現する。

APS（Advanced Planning and Scheduling）とは、計画とスケジューリングが融合した新しい意思決定のしくみであり、これからの製造業の ICT を利活用した情報システムの中核となる技術です。APSOM は、以下の図に示すように、計画を基軸とした意思決定システム、現場発のボトムアップな IT カイゼン、そしてソフトウェア連携と標準インタフェースにより、製造業や ICT 企業が、より戦略的で効果的なものづくりのしくみを構築することをお手伝いしています。

PSLX 技術仕様は、製造業が ICT 化を進めるにあたり、さまざまな業務ソフトウェアを連携させるための標準仕様です。PSLX プラットフォームを用いることで、異なるベンダーのソフトウェアを組み合わせて全体システムを構築することが可能となります。PSLX 技術仕様は、APSOM の前身となる PSLX コンソーシアムによって開発され、2005 年に国際標準である IEC/ISO 62264 として採用されました。その後、APSOM によって継続され、PSLX プラットフォームが開発されました。また、XML の国際標準化団体である OASIS の技術委員会より、この仕様をベースとしたソフトウェア実装のための仕様が提案されています。
（非売品）
発行責任者：特定非営利活動法人ものづくりAPS推進機構
 東京都港区虎ノ門1-17-1 虎ノ門5ビル5階
 03-3500-4891
 http://www.apsom.org/
発行年月日：2015年3月16日
著者代表：西岡靖之

（著者の許可なく本書の一部または全部を無断で複製、配布することを禁じます。）